Chart I

using the derived values for c (from the solvent polarity treatment) and $k_{\rm DP}$. A summary of all of the room temperature rate constants in water is given in Chart I.

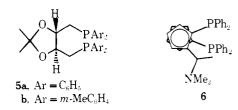
Acknowledgments. Financial support of this research initially by the National Institutes of Health (CA-16695) and currently by the Robert A. Welch Foundation and the Department of Energy is acknowledged. We express our appreciation for the assistance given us by Professors Janos Fendler and Michael Hall in performing photophysical measurements and statistical analyses.

References and Notes

- (1) For the previous paper in this series, see P. S. Mariano, A. A. Leone, and
- E. Krochmal, *Tetrahedron Lett.*, 2227 (1977).
 (2) (a) O. L. Chapman, G. L. Elian, A. Bloom, and J. Clardy, *J. Am. Chem. Soc.*, 93, 2918 (1971); (b) A. G. Schultz, *J. Org. Chem.*, 40, 1371 (1975); (c) A. G. Schultz and M. B. DeTar, J. Am. Chem. Soc., 96, 296 (1974); S. H. Groen, R. M. Kellog, J. Butler, and H. Wynberg, J. Org. Chem., 33, 2218 (1968).
- (3) E. J. Corev and J. Streith, J. Am. Chem. Soc., 86, 459 (1964); B. C. Deselms and W. R. Scheigh, Tetrahedron Lett., 3563 (1972); H. Furrer, Chem. Ber., 105, 2780 (1972)
- L. J. Sharp and G. S. Hammond, Mol. Photochem., 2, 225 (1970).
- (5) Estimated k_l values, using integrated extinction coefficients for the lowest energy singlet absorption band⁶ were shown to be solvent invariant.
 (6) T. Förster, "Fluorenzenz Orgnaischer Vervindungen", Vandenhoech und
- Ruprech, Gottingen, 1951
- (7) Cis-trans isomerization observed for 1-propenylpyridones¹ is easily rationalized by cyclization followed by the return of ylide to 1, since nonnucleophilic base treatment of 3, in which R is methyl and hydrogen, leads to a mixture of cis- and trans-propenylpyridones. Also, the lack of phosphorescence from 1 prevents obtaining information about intersystem crossing to an inert triplet. (8) E. Grunwald and S. Winstein, *J. Am. Chem. Soc.*, 78, 2770 (1956); S.
- Winstein, E. Grunwald, and H. W. Jones, *ibid.*, 73, 2700 (1951).
- M. Eigen, Angew. Chem., Int. Ed. Engl., 3, 1 (1964).
- (10) I. Zvgravescu and M. Petrovan, "N-Ylid Chemistry", McGraw-Hill, New York
- N.Y., 1976, p 204. (11) C. G. Hatchard and C. A. Parker, *Proc. R. Soc. London*, **235**, 518 (1956).
- (12) Camille and Henry Dreyfus Foundation Teacher-Scholar, 1975-1980.

Patrick S. Mariano,*12 Andrea A. Leone

Department of Chemistry, Texas A&M University College Station, Texas 77843 Received December 12, 1977

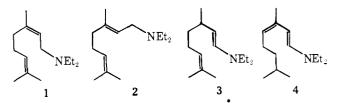

Metal-Assisted Terpenoid Syntheses. 6.1 **Enantioselective Hydrogen Migration in Prochiral** Allylamine Systems by Chiral Cobalt Catalysts

Sir:

Transition metal catalyzed double-bond migration has been extensively studied.² The isomerization products obtained with efficient catalysts generally reflect thermodynamic control implying effective reversibility of the reaction steps involved. Therefore migration of a multisubstituted inner double bond of an olefin to the less-substituted terminal one would not be possible unless the latter gains relative stability.³ We are interested in transition metal catalyzed isomerization of substituted allylamines to the corresponding enamines, as the isomerization of prochiral allylamines poses an interesting problem of enantioselection. Organic base catalysts were reported⁴⁻⁸ to be effective only for unsubstituted allylamines (R_1 , $R_2 = H$), and neither the transition metal catalysis nor the

0002-7863/78/1500-3949\$01.00/0

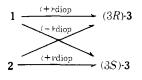
© 1978 American Chemical Society



other chiral diphosphines were tested. A modified (+)-diop (5b) having a methyl group at a meta position of the phenyl groups did not improve the enantioselectivity. Substitution of the PPh_2 groups of (+)-diop with $AsPh_2$ reduces both the catalytic activity and the enantioselectivity. (R,S)-Aminoethylferrocenyldiphosphine²¹ (6) is known as a chiral ligand capable of forming a highly enantioselective rhodium(1) hydrogenation catalyst.²¹ A cobalt catalyst prepared with this ligand isomerized 1 (50:1:1:3 $1/Co/6/AlH(i-Bu)_2$) at 70 °C for 50 h into (3R)-3 (10% yield) in 10% ee, but, at 90 °C for 50 h, 1 was isomerized into (3S)-3 (50% yield) in 17% ee. This reversal in the product configuration and unusual increase in optical yield perhaps reflect the configurational flexibility of the ligand.

stereospecific reaction has been reported for the isomerization of substituted allylamines. We wish to report here an enantioselective isomerization of prochiral allylamines to chiral enamines, an aldehvde equivalent, a stereospecific hydrogen migration reaction which has never been observed in the entire field of olefin catalysis.

$R^1R^2C = CHCH_2NR_2 \Rightarrow R^1R^2CHCH = CHNR_2$


For the nonstereospecific isomerization, a discrete compound $HCo(N_2)(PPh_3)_3^9$ was found to be effective. For example, N.N-diethylprenylamine (N.N-diethyl-3-methyl-2butenylamine) was isomerized with 1 mol % of the complex (80 °C, 15 h, THF) to give 95% isolated yield of the trans-prenylenamine (N,N-diethyl-3-methyl-1(E)-butenylamine). Similarly, N.N-diethylnerylamine¹⁰ (1) and N.N-diethylgeranylamine¹¹ (2) were isomerized to give the racemic citronellal-trans-enamine¹² (3) in 85% yield together with a small amount (<15%) of the 1,3-dienamine¹³ (4).

More conveniently, a cobalt catalyst is prepared in situ from cobalt(II) salts, e.g., naphthenate, ¹⁴ with AlEt₃ or AlH(i-Bu)₂, and PPh₃ (mol ratio, 1:3:3). Comparable yields and similar or slightly higher reaction rates were obtained as compared to $HCo(N_2)(PPh_3)_3$. The enantioselective reaction was effected with this Ziegler type catalyst employing a chiral phosphorus ligand in place of PPh₃.

Monodentate chiral ligands L gave low optical yields for isomerization of 1. A reaction solution (50:1:3:3 1/Co/L/) $AlH(i-Bu)_2$, L = Ph₂P(O-menthyl)¹⁵ or Ph₂P-menthyl¹⁶) gave (80 °C, 15 h, THF) (3R)-3 (~20% yield) in 7% ee.¹⁷ Similarly the catalysts prepared with Ph₂P(neo-menthyl)¹⁸ and (S)-PhP(O-o-MeC₆H₄)Me¹⁹ gave (3S)-3 (20 and 5%) yield, respectively) in $\sim 5\%$ ee¹⁷ for both cases.

Chiral diphosphines gave better optical yields for the isomerization of 1 and 2. Thus the reaction of 1 was effected (60 °C, 64-75 h, THF) with the cobalt catalyst prepared from (+)-diop²⁰ (5a) (50:1:1:3 1/Co/diop/AlH(*i*-Bu)₂) to give (3R)-3 (23% yield) in 32% ee. Under the same conditions, the isomerization of 2 gave (3S)-3 (12% yield) in 33% ee. Several Chart I

It is noteworthy that the (-)-diop cobalt catalyzed isomerization of 1 and 2 exhibits a reaction stereochemistry opposite to that observed with the (+)-diop cobalt catalyst. The stereochemical correlation established is shown in Chart I. As the stereochemical integrity at C-3 remains intact upon acid hydrolysis, the present isomerization provides a practical route to optically active aldehydes, e.g., citronellal.

Unsubstituted allyl ethers (CH₂=CHCH₂OR) were isomerized into vinyl ethers by $rhodium(1)^{22}$ or $ruthenium(II)^{23}$ complexes. Isomerization of unsubstituted²⁴ or substituted²⁵ allyl alcohols to the corresponding aldehydes by rhodium(I) was also reported. The present cobalt catalyst lacks the activity for isomerization of allyl ethers and alcohols. Despite this limitation, the applicability to trisubstituted allylamine systems is considered to be quite significant, and the synthetic utility for chiral natural products is obvious. The scope and mechanism are under investigation.

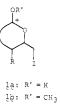
References and Notes

- (1) Part 5: S. Akutagawa, T. Taketomi, H. Kumobayashi, K. Takayama, T. Someya, and S. Ötsuka, Bull. Chem. Soc. Jpn., **51**, 1158 (1978).
- E.g. (a) P. M. Maitlis, "The Organic Chemistry of Palladium", Vol. II, Academic Press, New York and London, 1971, pp 128-142; (b) P. W. Jolly and G. Wilke, "The Organic Chemistry of Nickel", Vol. II, Academic Press, New York, N.Y., 1975, pp 54-61; (c) P. N. Bylander, "Organic Syntheses with Noble Metal Catalysts", Academic Press, New York, N.Y., 1973, pp 145-152
- (3)The double-bond migration from inner to terminal one is involved in the 'hydrozirconation'' of n-octanes: D. W. Hert and J. Schwartz, J. Am. Chem. Soc., 96, 8115 (1974).
- C. C. Price and W. H. Snyder, Tetrahedron Lett., 69 (1961).
- (5) J. Sauer and H. Prahl, *Tetrahedron Lett.*, 2863 (1966).
 (6) M. Riviere and A. Lattes, *Bull. Soc. Chim. Fr.*, 2539 (1967).
- A. J. Hubert, J. Chem. Soc. C, 2048 (1968).
- J. Sauer and H. Prahl, Chem. Ber., 102, 1917 (1969).
- A. Yamamoto, S. Kitazume, L. S. Pu, and S. Ikeda, J. Am. Chem. Soc., 93, (9) 371 (1971)
- K. Takabe, T. Katagiri, and J. Tanaka, Tetrahedron Lett., 4009 (1972) (10)
- T. Fujita, K. Suga, and S. Watanabe, Chem. Ind. (London), 231 (1973)
- (12) N.N-Diethyl-3,7-dimethyl-1(E)-6-octadienylamine; the trans-geometry is deduced from the J_{H-H} value, 13.5 Hz.
- (13) *N*,*N*-Diethyl-3,7-dimethyl-1(E)-3-octadienylamine; identified by NMR spectrum, important signals at δ 0.87 (d, -CHCH₃, 6H), 1.0 (t, -CH₂CH₃, 6H), 1.65 (s, =CCH₃, 3H), 2.98 (q, -NCH₂CH₃, 4H), 4.92 (d, -CH=CHN-, 1H), 4.94 (t, -CH₂CH=, 1H), and 5.91 (d, =CHN, 1H, J_{H-H} 13.5 Hz).
- Technical grade, Nakarai Chemicals Ltd.
- (15) Prepared by treating Ph₂PCI with *l*-menthol in pyridine; colorless liquid, bp 160 °C (0.01 Torr). [a] ¹⁶_D -56.5° (c 2.1, *n*-hexane).
- (16) Prepared by reacting menthyl lithium with diphenylchlorophosphine; bp 139–142 °C (1.8 × 10⁻² Torr), $[\alpha]^{24}$ _D =64.7° (*c* 3.4, *n*-hexane). (17) The optical purity was assessed by comparing the $[\alpha]^{25}$ _D value (=64.7°,
- (c 3.4, n-hexane) of an authentic sample of N-[(3R), 7-dimethyl-1(E), 6octadienyl diethylamine
- J. D. Morrison and R. E. Burnett, J. Am. Chem. Soc., 93, 1301 (1971). (19) W. S. Knowles, M. J. Sabacky, and B. D. Vineyard, J. Chem. Soc., Chem.
- Comm., 10 (1972)
- (20) H. B. Kagan and T. P. Dnag, J. Am. Chem. Soc., 94, 6429 (1972).
 (21) T. Hayashi, K. Yamamoto, and M. Kumada., Tetrahedron Lett., 4405
- (1974)
- (22) E. J. Corey and J. William Suggs, J. Org. Chem., 28, 3224 (1973).
 (23) J. Blum, Isr. J. Chem., 8, Suppl. 2p (1970).
 (24) W. Strhomeier and L. Weigelt, J. Organomet. Chem., 86 C17-19 (1975)
- (25) R. E. Rinehart, U.S. Patent 3 433 808 (1969).

Hidenori Kumobayashi, Susumu Akutagawa

0002-7863/78/1500-3950\$01.00/0

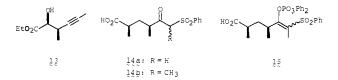
Central Research Laboratory, Takasago Perfumery Co. Ltd. 31-36, 5-chome, Kamata, Ohta-ku, Tokyo 144


Sei Otsuka*

Department of Chemistry, Faculty of Engineering Science Osaka University, Toyonaka, Osaka, Japan 560 Received January 17, 1978 **Stereoselective Epoxidation of Acyclic Olefinic Carboxylic Acids via Iodolactonization**

Sir:

Many macrocyclic natural products pose a considerable synthetic challenge because of their stereochemical complexity. Our interest in the synthesis of these compounds has focussed initially on the stereoselective introduction of chiral centers in appropriate acyclic precursors. Recent work in this area has led to several novel and general methods for doing this; however, many of these approaches serve only to establish a specific relationship between the newly generated chiral centers and do not provide for relative asymmetric induction from preexisting ones.¹ In contrast, hydroxyl-directed epoxidation can be used to introduce two chiral centers with high 1,2- or 1,3asymmetric induction in acyclic systems.² Iodolactonization has been used to functionalize double bonds in a regio- and stereoselective manner in a large number of cyclic cases,³ but its potential for similar selectivity in acyclic systems has remained largely unexplored. Recently, Terashima and Jew reported an asymmetric synthesis of α -hydroxy acids in which the stereochemistry is established by a bromolactonization.⁴ In this communication, we describe the development of iodolactonization as a means of epoxidizing acyclic olefinic acids with very high 1,2-asymmetric induction.


Under conditions involving kinetic control (I₂, aqueous NaHCO₃, and ether⁵ or N-iodosuccinimide and CHCl₃), iodolactonization of several acyclic γ, δ - and δ, ϵ -unsaturated acids exhibits only moderate asymmetric induction.⁶ Equilibration of a cyclic intermediate and therefore thermodynamic control over the stereochemistry can be achieved by reaction of the carboxylic acid with iodine in acetonitrile in the absence of base. Under these conditions, cis to trans equilibration occurs, via the protonated lactones 1a, and affords the more stable

trans isomers with very high stereoselectivity and in good yield. A high concentration of this protonated intermediate ($pK_a \approx$ -7) is required, as shown by the fact that substitution of dimethylformamide ($pK_a \approx -1$) for acetonitrile ($pK_a \approx -10$) as solvent in the cyclization of 2b leads to a kinetic mixture of 3b and 4b (3:4), even after a prolonged period.

As Table I indicates, this stereoselective iodolactonization procedure is general for a variety of γ , δ - and δ , ϵ -unsaturated acids. In the case of the disubstituted olefins 5a-c, only γ lactones are obtained, as would be expected from the greater stability of γ - over δ -lactones.¹¹ Understandably, little stereoselectivity is seen in the cyclization of 2-phenyl-4-pentenoic acid (11),¹² although the possibility that 1,3- or even 1,4asymmetric induction may occur in the formation of appropriate six-membered lactones cannot be excluded.

The hydroxy acid derivatives 5 were prepared by conventional elaboration of the acetylenic ester 13, which is formed in 69% yield from the reaction of ethyl trans-2,3-epoxybutanoate with 1-propynyldiethylalane. The δ, ϵ -unsaturated acids 8 were prepared from meso-2,4-dimethylglutaric anhydride¹³

© 1978 American Chemical Society